
MATHEMATICS OF COMPUTATION, VOLUME 25, NUMBER 115, JULY, 1971 

On the Convergence of Broyden's Method for 
Nonlinear Systems of Equations 

By J. E. Dennis, Jr.* 

Abstract. This paper uses majorant techniques to study the convergence of Broyden's 
single-rank update method for nonlinear systems of equations. It also contains a very 
elementary proof of the local convergence of the method. The heart of the method is a 
procedure for generating an approximation to the Jacobian of the system using only in- 
formation on hand and not requiring partial derivatives. 

1. Introduction. C. G. Broyden [2] suggested an algorithm for iterating to a 
solution of a system of nonlinear equations which has shown its mettle in dealing 
with practical problems. The purpose of this paper is to provide a Kantorovich-type 
analysis and an elementary local convergence proof for this method. In fact, the 
analysis is applicable to the entire class of 'single-rank update' methods just to the 
extent that it seems to justify heuristically the generally superior performance of 
Broyden's method over the rest of the class. 

These methods generate sequences {x"}, { H1, one consisting of approximate 
roots and the other of the corresponding approximate inverse Jacobian matrices. 
At the nth step, one obtains x,+1 from x,, and H1 by setting 

(1) xn + = ,Xn - YnHnF(Xn), 

where F(xn) = (f1(xn), * , fn(x4))' is the residual vector at the point x", and Yn is a 
real number about which more will be said later. Hn, is obtained by using an idea 
due to Davidon (5]. It is required to satisfy-the equation 

(2) H.+,Yn Hn+,(F(xn+l) - F(xn)) = xn+1 - xn. 

This seems to be a very clever use of the small amount of new information furnished 
by F(xn+A) since it is equivalent to 

Jn+1 

(Hn + 1 J(x) - I) dx = 0, 
xn 

where J denotes the Jacobian matrix. It makes Hn+i look like a very reasonable 
approximation to the inverse Jacobian somewhere between xn and Xn+l, at least in 
the direction xn+1 - xn. For the single-rank methods, the choice of Hn+, from the 
class of N X N matrices satisfying (2) is 

(3) Hn+= Hn - (Hny. + 'YnHn F(xn)) dn/dnyYn 

Received October 23, 1969, revised August 10, 1970. 
AMS 1969 subject classifications. Primary 6550; Secondary 4690. 
Key words and phrases. Nonlinear vector equations, Newton-like methods, Davidon methods, 

iteration, nonlinear majorization. 
* This research was supported by NSF GJ-844. 

Copyright i 1971, American Mathematical Society 

559 



560 J. E. DENNIS, JR. 

If BA = H', then 

(3') B+= B, - (yR + 7yF(x.)) dT'Bnl/y dnF(xn), 

where dn E E" is, of course, chosen so that dlyn 0 0. 
Broyden [3] has shown that for his method, d. = HTHnF(xn), if J(x) = L, a 

constant matrix, i.e., the system is linear, then {x"J and {HRJ converge to x*, the 
root, and L-1, respectively, from any xO and any Ho sufficiently close to L-'. 

Such a result would be too much to hope for when working with nonlinear 
systems, but in Section 2 we will show that the rate of deterioration in the approxima- 
tion of J(xn) or J(x*) by Bn depends on the nonlinearity of F in a very simple way. 
This will enable us to analyze the method as a Newton-like method [7] in Section 3. 
In Section 4, we will draw some reasonable, though nonrigorous, conclusions, based 
on the results of Section 3, about the choice of oy. Any reader interested just in the 
local convergence can read only Lemma 3 and Theorem 5. 

2. Error Bounds for the Jacobian Approximation. Let Do be an open convex 
set on which F is continuously differentiable. Let x be a fixed element in Do and let 
K be a nonnegative number. We will always use the 1, norm, so if A is a matrix, I IA II 
is the square root of the spectral radius of ATA. Remember that J is the function 
which maps x to the Jacobian of x. 

Definition. J E LipK I xI w.r.t. Do iff for every x E Do, I IJ(x) - J(X)ll KI Ix-xI 1. 
J E LipK Do if J e LipK IxX w.r.t. Do for every x EE Do. 

LEMMA 1. Let J E LiPK IxJ w.r.t. Do, then for any x E Do, 

IIF(x)- F(g)- _j()(X- _ (K) lix -_ gl2. 
Proof. See [4] or [7]. 
LEMMA 2. Let x, x' E EN with XTX' = 1, then 

||Ix - x x | = |lx'. |*x||. 

Proof. See [3]. 
LEMMA 3. Let x, x' E Do and let B be an N X N real matrix. Let d E EN with 

dTF(x) 0 0 and set 

B' = B + (F(x') - F(x) - B(x' - x)) dTB/dTB(x' - x) 

and 

q -lIx -xI I IIdTBIi 

IdTB(x' - x)I 

Under these conditions, if J E LiPK I X I w.r.t. Do then 

(4a) IIB' - J(x)ii ? qIIB - J(x)II + 2 - xi (lIx' - _ii2 + Iix -g 112). 

If J E LiPK Dog then 

(4b) iiB' - J(x')ii ? qiB - J(x)ii + K(1 + -q) lIx' -xi. 

Proof. Assume that we have established (4a); then, since J E LiPK Do, we can set 
x= x and add II J(x) - J(x')jI to both sides of (4a) to obtain (4b). (4a) is easily seen 
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to follow from the following indentities. 
dT 

B' - J(x) = B- J(g) + (F(x') - F(g) - J(x)(x' - d)) B 
d TB(x' - x) 

dTB 
(F(x)- F(x)- J(x)(x - )) dB 

dTB(x' - x) 

dTB 
-(B- J(g))(x'-x) T 

dTB(x' - x) 

Now, apply Lemma 1 to the two middle terms and Lemma 2 to the combination of 
the first and last terms. 

We will now apply (4b) to the case when B = Bn, B' = Bn+,, x = xn, x' = Xn+l) 
d = dn. In the next theorem, interpret the quotient qn in the obvious way and define 
q-l -- 1. 

THEOREM 1. Let J E LiPR DO and let xo, , Xn+1, B0, , Bn+, be generated by 
any single-rank method. If {x,: i = 1, * , n + 1} C DO, then 

IIBn+1 - J(xn+l)lI ? (I qj I IBo - J(xo)l I 

(S) i-o 
nn-i-1 

+ K qi (I + 2qj) ||xj+1 -xill. 
jO i--1 

Proof. The proof will be by induction on n + 1. 
Let n + 1 = 1. By making the proper substitutions in (4b), 

lB1- J(xl)I I q IoIIBo - J(xo)II + K(1 + 2qo) Ilix - xoII, 

which is (5) for n = 0. Assume by way of induction that (5) holds for n + 1 < k. 
Then, again by (4), 

IBk - J(Xk)I I 
k-1 \k-1 k-1-j-1\ 

< ( q I) lBo - J(xo)II + K E ( qi)(l + 2q,) IIxi+1 - xil, 
j-O j-O i--1 

and so 

IIBk+l - J(xk+l)ll 

_k-1 \k-1 k-1-j-1\ 

_k {II qj) IIBo - J(xo)ll + K ( qi )(I + lq,) lxi+1 - xill 

+ K(1 - 
2qk) llXk+1 - 

Xki 

=(5) 

with n + 1 = k + 1 and the induction is complete. 
Now, obviously, qn _ 1 and, just as obviously, any analysis based on (5) needs 

qn = 1 or that II q, is uniformly bounded. There are various ways of 'fudging' 
however in order to control the deterioration [1], [6]. 

The Cauchy inequality tells us that qn = 1 if and only if there is a constant Cn 0 
such that B'dn = c,(xn+l - xn) = cfHnFn i.e., dn = cnHnHn~ n Broyden's choice. 
If we view a particular method as the selection function for dn, then a glance at (3) 
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and (3') convinces us that the two methods are the same if d' = cod, for some sequence 
ce I of nonzero constants. Hence, Broyden's method is the unique single-rank 

method which is naturally of bounded deterioration. It seems unnecessary to find 
the general analogue of (5) for (4a). The analogue for Broyden's method is the heart 
of the proof of Theorem 5. 

3. A Kantorovich-Type Analysis for Broyden's Method. In [7], the author con- 
siders the convergence of a class of Newton-like methods of the form 

(6) x,,+1 = x. - A(x.)-F(xn,). 

An immediate corollary of the results there is the following important extension 
of Rheinboldt's Theorem [10]. 

THEOREM 2. Let F be as above and let A have the property that given any x E Do, 
A(X) is an N X N real matrix. Let 80, &, be nonnegative real numbers such that 

(7) IIA(x) - J(x)ll < So + 8bjjx - xOII 

for every x C Do and let 1 and l be real numbers such that A(xo)-1 exists and 
IA(xo)-'I :!5 #1 <,XIA(xo)- lF(xo)l t < 71. 

Then, 1 > Sol, I _ h' = 13Kri/(1- 50o)2 and N(xo, ro) C Do, where 

(1 -(1 - 2h')112 (1 - 128) 

imply that F has a root x* E N(xo, rO) which is unique in Do ( N(xo, rJ), where 

1 + (1 - 2h')112 (1 -p 6) 

Furthermore, x"+1 = xn - A(xo)- F(x1) converges to x* from any x EC Do l) N(xo, r1). 
If in addition, 1 > 3138, 2, > h = (28k + K)13l/(l - 318o)2 and N(xo, ro) C Do, 

where 

- (I - 2h)1/2 (1 - Aid ) 
13(2 81 + K) 

then the sequence {x,,} generated by (6) converges to x*. 
The fact that the theorem ensures convergence of the I x, I sequence under less 

stringent conditions than for the {x*} sequence is a characteristic of this type of 
theorem and results from using the {x} I sequence to establish the existence and 
uniqueness of x*. 

If we write (5) for the special case of Broyden's method, we obtain 

(5') IIBn+1 - J(x.+1)ll _ |lBo - J(xo)ll + 2 P llxi+l - x4j 

which, except for a wrong-way triangle inequality, looks like a version of (7) with 
80 = IIBo - J(xo)lj, 61 = OK and the function A only defined at the iteration points. 
One is immediately led to conjecture the following theorem for Broyden's method. 

THEOREM 3. Let F E LipK Do and let Bo be a nonsingular N X N matrix such 
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that IIJ(xo) - Boll < 5, 1lHoll ? 3 and IIHoF(xo)ll ? t., Then, 1 > (35, 4 _ h-- 
,BK/(1 - f)2 and N(xo, r') C Do, where 

I = - (I - 2h()1/2 ( 
0 O~(K 

imply that Fhas a root x*, lxo - x*ll < r, and x* is unique in Do (n N(xo, r'), where 

= 1+ (1 - 2h1/2 ri O3K ( - (35). 

Furthermore, x',+ = x- HoF(xt) converges to x* from any xo E Do C, N(xo, ri). 
If in addition, 1 > 3(35, * ? h =_ 3Kr/(1 - 3935)2 and N(xo, ro) C Do, where 

ro 1 - (I - 8) (1 - 33) 
4# K 

then Broyden's method with IYn = 1 for every n, converges to x*. 
The existence and uniqueness of x* and the convergence of the x' sequence can 

be obtained directly from Theorem 2 by, for example, setting A(x) 5 Bo for every 
x E Do. Thus, we make the second set of assumptions and proceed to a consideration 
of the full Broyden sequence. The first step in the proof of Theorem 2 by the tech- 
niques of [7] is to show that A(x) is always invertible and to find a scalar function 
a(.) such that a(llx - xolI)l' IIA(x)-'ll for every x G N(xo, ro). Let us assume that, 
for n > 0, E~i_0 llxil- xll < ro. Then from (5'), 

|JHOBn+1 - Ill | (3 llBn+1 - Boll 

9 3 11Bn+ I- J(xn+,)l | + I I J(xn+,) - J(xo)ll + IIJ(xo) - Boll] 

< (3(26 + 2E llx+l - x|ll + Kllxn+l - xll) 

< 2(3 + E llxi+, - xill < 2(35+ -Kro 

2#3 + 5(1 - (1 - 8h)1/2)(1 - 3(3) < 3(3 + c(1 - 3(6) < 1 

since c < 1. Hence, by the Banach Lemma [7], [8], (HoBn+l) 'H = 14+, exists and 
is bounded in norm by (1- 2(6 - (5(K/2) 1 0 ljxj+1 - xill)-. 

Let bo = (3' and ho = (3, to = 0. Define f(t) 2KtV - (bo - 36)t + boa, h, = 

((1 - 2( 6 - 5(Ktk/2) 1, hI = bk and consider the sequence tk+1 = t4 + hkf(tk). 
Notice that ro > t4 = n7 _ IIHoF(xo)ll = llx, - xo|l. Suppose now that 0 < tk < ro, 
then, since f(ro) = 0, ro - tk+ = ro - tk + hk(f(rO) - f(tk)) = (ro - tk)(l + hkf'(Q)), 

t C (tk, ro). Now, 

f'Q) = 4Kt - (bo - 35) < 4Kro - (bo - 36) 

= (1 - (1 - 8h)/2Xbo - 36) - (bo - 35) = -(1 - 8h)"2*(bo - 36) < 0. 

Hence, 1 + hkf 'Q) < 1 so ro - tk+1 < ro - t. Furthermore, hk > (3 = ho, so 

hkf'(Q) _ -ho(bo - 36) = -1 + 3(36 > -1 and 1 + hkt'(Q) > 0. Thus, 
0 < ro - tk+ < ro - t and {t } is a strictly increasing sequence in [0, rj]. Hence, it 
converges to t* < ro. If t* < ro, then t* = t* + ((1 - 2(3 - 5K(3t*/2)-'f(*), and 
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so f(t*) = 0. This ensures that t* = ro, since ro is the smallest root of f in [O., ro]. We 
have already that t > IxI - xOll. Suppose now that xo, xI, . . , Xk satisfy the prop- 
erties that llxj+ - xilI <_ ti+1 - ti, i = 0, 1, * , k - 1. Then Dk OIlxi+ - xII 9 
tk < ro and Hk exists with llHklI < hk. Now, apply Lemma 1 and (5'): 

||Xk+l- Xk|| 

? hk[j IF(Xk) -F(Xk-.i) J(xk- 1)(Xk - Xk-1)t I + II J(Xk- 1) -Bkj I| I I |Xk X- | Jj 

S h{JiKIt xj - Xk_ 1tt2 + ( + IK E I tx,?i - lt) Itxk-Xk 1It] 

? hk[j K(tk - tk-') + (5 + I Ktk-l)(tk - tk-1) Itk-_) + t'(tk-1) 
tk - tk-i 

= bk-_ + 't (tk-1) 

= bo(1 - 2ho 5 - IKtk-l) + 4Ktkl - (bo - 35) 

5 bo- 25 - boKtkl + 4Ktk-l - bo + 35 = 5 + jK4tk-. 

We can thus write 

I|Xk+l - Xktt | hk[2 K(tk - tk-.1) + t'(tk-l)(tk - 
tk-1) + Itk-0)J 

:! hkt(tk) = tk+I 1 tk i 

since the bracketed expression is the Taylor expansion for the quadratic f. Now, we 
can conclude by induction that - llxi+I - xiII ? tk < ro for every k. Hence, 
Ix4 I is a Cauchy sequence and must converge to some x** E N(xo, ro). It only 
remains for us to show that x** = x*. From (5'), we obtain IlBkII Bg IIJ(xk)II + 
5 + jKtk ! I1J(xo)II + 5 + 5Ktk/2 < IIJ(xo)II + 5 + 5Kro/2 _ C. Hence 

IIF(x**)tt = irm IIF(xk)tt = rim tBttxk - XkjI ? C tmxk+l -Xxktt = O. 
k k k 

Now, ro < rl so the unicity assertion concerning x* ensures that x* = x**. 
The following corollary is straightforward. 
THEOREM 4. Let x* be a root of the nonlinear system F. Let the first partial deriva- 

tives satisfy a Lipschitz condition of order 1 in some open set containing x* and let 
J(x*) be invertible. Under these conditions, there is an e> 0 and a 8 > 0 such that if 
xo is any N-vector and BO is any matrix satisfying ixo - x*I I < e and IIJ(xo) - BolI < 8, 
then Broyden's method with zy = 1 for all n converges to x* from xo. 

It is possible to give a more elementary proof of local convergence which requires 
only that J E LiPK {x*} w.r.t. Do. This condition holds for example if all the first 
partials of F exist around x* and the difference quotients of the first partials are 
bounded at x*. This is the continuity condition often used to provide a simple proof 
of the local quadratic convergence of Newton's method. 

THEOREM 5. Let x* be a root of F and J C LiPK {x* } w.r.t. Do. Under these condi- 
tions, if J(x*) is invertible, then there exist realpositive numbers e and 3 such that if Bo 
is a real N X N matrix, lBo - J(x*)I S 8, and xo - x*II < e, Broyden's method 
with e 1 converges to x* from this starting point. 

Proof. Let i# bound IIJ(x*)-lII. Choose 8 < 1/6B and e < 2a/5K, such that 
N(xo, -) C gO. Now, select xo, Bo as above. It is clear from the Banach Lemma [7], [8] 
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that Ho exists and is bounded in norm by ,B(1-,6)1. The choice of e ensures that 
F(xo) exists and so x1 exists. 

el I jX - x*II = lIxo - x*- HO(F(xo) + F(x*))II 

? II-Ho I*IIF(xo) - F(x*) - Bo(xo - x*)II 

< I I Ho [II F(xo) - F(x*) - J(x*)(xo - x*)I I + I I J(x*) -Bo I I Ixo -x*I II 

< 0 a pa (<KeO + 6eo) (2Keo + 6)eo 

1 -p36 \5 +5 1 o < 2 

Hence, F(xl) and B1 exist. Now, 

I jx1 - xoII > lixo - x* II - 1x1 - x*II > -e- 2e0 2eo. 

Applying Lemma 3 and the above, we obtain 

iB1 - J(x*)|| 6 + 2 (4eo + eO) ||xl-xoIK 

5 1 - 
< 5 +- 4Keo0-eo lXl - xO-I 4 2 

6 6 + 4 Keo ? 
3 

< 26. 

Hence, IIJ(x*)- 1B - IIj < 2 36, so H1 exists and is bounded in norm by i3(1 -2, )-', 
so x2 is defined. Assume by way of induction that xl, * * *, x,, H1, * * *, H,,..1 all exist 
and ek < 4ek, jjBk - J(x*)jl ? (2 - (1)k)'5 k < n. Then, IjJ(x*)-Bn - III ? 

(2 - (,)kg5 < and so Hn exists by the Banach Lemma and is bounded in norm by 
B(1 - 236)-1. This ensures that x,+1 exists. Now 

en,: IIH,11.[jjF(x,) - F(x*) - J(x*)(x. - x*)II + ||J(x*) - B.jjee] 

c: 0(1 - 20B)-'[-Ke2 + (2 - (1)f) 6en ] 

< (3(1 - 2fl6)1[(2)2 (6/5) + (2 - (2)6Ie 

< 3(1 - 203)6f25en < 'en 

We complete the induction by applying Lemma 3 to write 

JIBn+1 - J(x*)Il !5 |lBn- J(X*)II + -K(e2+1 + e2) Ijxn+l -Xnl1- 

< (2- (2) )5+ rKen 

< (2 - (2) + iF(l)'f*T)6 

= (2 -2 2)1)+)'. 

We have used here that, as above, len < I|x.+l - x.fl. 
Hence, the sequence {xn19 I Hn } exists and en < (L) eo, so Broyden's method 

converges. 
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In Lemma 3 and the theorem above, we note that if K = 0, i.e., the system is 
linear, then IIBR - J(x*) j< I IBA - J(x*)jj and e = "co 9". This is simply a reflection 
of the fact, indicated by the expression for el in terms of e0, that for a linear system, 
a5 ? 1/2#3 is sufficient to ensure convergence from any xo. See [3]. 

It is simple to change the hypothesis of Theorem 5 so that Bo is required to be 
close to J(xo) instead of J(x*). 

COROLLARY 5. Under the hypothesis of Theorem 5, there exist real positive numbers 
6', e' such that if I jxo - x*|l < E', and Bo is a real N X N matrix, I jBo - J(xo)l < a', 
then Broyden's method converges to x* from this starting point. 

Proof. Let e and 6 be as in the previous theorem. Select e' 9 e and 6' such that 
6' + Ke' ? 6. Now, let jixo - x*jj < e', JjBo - J(xo)jj < 6'. Then, jjB0 - J(x*)jl ? 
jjB6 - J(x0)jj + IjJ(xo) - J(x*)jj ?< 6' + Ke' ?< and j|xo - x*jj < e, so the result 
follows from Theorem 5. 

4. The Choice of ey,,. In the introduction, we made the obvious statement that dR 
was chosen so that d.yn $ 0. Clearly, this requirement alone allows us to define 
HR+l from HR by (3). The following theorem clarifies this requirement. 

THEOREM 6. Let HR be a nonsingular N X N matrix and let dR G EN, such that 
daYR $ 0. Then, HR+l is nonsingular if and only ifdT^F(xR) 0 0. 

Proof. First, let us assume that dnF(xR) = 0. Direct substitution in (3) yields 
H"+lF(xR) = HRF(xR). Also, 

H,+lF(xR+l) = HRF(xR+l) - (H,,yR + y,,HHF(xR)) d(R~) 

= HRF(xR+l) - Hnyn -y7RHRF(xR) = (1 - 'yR)HRF(x.). 

If yyp = 1, HR+l is clearly singular. If en 0 1, then as above, HR+lF(xR+l) = 
(1 - Y^)HR+lF(xR)-and so Hfl+l(F(xR+l) - (1 - 'yR)F(xR)) = 0. Hence, either HR+l is 
singular or F(xn+,) = (1 - yR)F(xfl). If the latter were true, then d TF(xR+l) = 0 and 
dFYn = 0 would result. This would contradict the hypothesis dnyn 0 0, so H.4+, is 
singular. 

Assume now that Hn+,x = 0 for some x Z 0. Clearly, d4,x 0 0 since HR+l agrees 
with the nonsingular matrix HR on the orthogonal complement of do. From (3), 

Hx = (Hay. + ynHRF(XR))dTX/dTYR 

and so 

x = (yn + yRF(xn))dnTx/dTyR. 

Hence, d TX = (dnyn + yld TF(xfl))d Tx/dnyR and so 
ytd, 

F(XR) = 0. Now, if oYn = 0, 
F(xR+l) = F(xn) and d:yn = 0, so we can conclude that dn is perpendicular to F(Xn). 

The previous theorem obviously has a more general analogue in the language of 
Lemma 3. 

The proof of Theorem 6 could have been simplified by using (3') but we wanted 
the little result that dTF(xn) = 0 implies Hn+1F(Xn+l) = (1 - 'Yn)HnF(Xn). 

Let us suppose that we are choosing YR by some minimization criterion like 
minllF(Xn - yHnF(Xn))il. In a difficult situation, we may have to settle for a small 
OyR and F(xR+l) close to F(xn). This means that yR is close to zero and, since the norm 
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of do is relatively irrelevant, dxy. would be close to zero. The obvious remedy is to set 
do = yn. Now, we note that dF(x.) = F(xn+ )TF(x) - F(x.)TF(x.) will be near 
zero and so the new direction of search H,+1F(x^+1) H"F(x^), the direction we 
have just searched unsuccessfully. C. G. Broyden confirms that the above heuristics 
fit his computational experience with do = yn. See [2]. 

In Broyden's successful method, also defined in [2], do = -H,,HnF(xn) and so 
dT^F(x^) is in no serious danger of going to zero except as a result of convergence, 
i.e., the direction of search will probably not suffer too much from a small oyne Of 
course, d Yn will be in danger and so the magnitude of the correction will be distorted 
and it may be desirable to obtain a fresh approximate Jacobian. This seems to explain 
behavior observed by M. J. D. Powell [9]. 

A useful strategy for choosing oy would probably be based on the one outlined 
by A. Goldstein [8] for Newton's method. It would seem reasonable to choose 'y by 
some descent criterion until one feels he has a good approximate root and then 
switch to -y 1. 

5. Concluding Remarks. In this investigation we have ignored the fact that for 
many problems the direction d,, will sweep through a basis often enough to make (5) 
and (5') unduly pessimistic. Powell [9], at additional computational expense, modifies 
Broyden's correction in such a way that Be converges to J(x*) if x,, converges to x*. 
There seems little doubt that Powell's modification is justified for many problems. 

The results in this paper were obtained while the author was on leave at the 
University of Essex, Department of Computer Science. The author wishes to thank 
the department in general and Mr. C. G. Broyden in particular for providing an 
excellent climate for research. 
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